

FEM of cracking during nanoindentation and scratch testing in the coated systems

František Lofaj

Institute of Materials Research of the Slovak Academy of Sciences Košice, Slovakia

Outline

- Introduction to IMR SAS/Divison of Ceramic & Non-metallic Materials
- Scientific lecture modeling of cracking during nanoindentation and scratch testing
 - Tribological test vs. scratch test
 - Nanoindentation
 - Scratch testing

Institute of Materials Research of SAS (...since 1955)

Division of ceramic and non-metallic systems (2015-...) Department of structural ceramics (1990-2015)

12 persons + 5 PhD. students

Publications and projects in VD02 in 2017

Main activities/fields of interest:

- Microstructure and mechanical properties of bulk monolithic structural ceramics
- (silicon nitride, alumina, silicon carbide...) and (nano)composite ceramics
- Reinforced ceramics for special applications (graphene platelets/CNT reinforced ceramics)
- Properties of ultrahigh temperature ceramics (ZrB₂ based composites)
- SPS of ceramics
- PVD of hard coatings
- Fibers by electrospinning

.....nanoindentation and tribological behavior of different materials

Typ publikácie	Počet publikácie	Počet publikácie	APVV	6
ADCA-Zahr.karent.čas.impaktovaný	35	35	VEGA	4
DAIb-Kvl.práce-doktorand.v angl.	3	3	SE projects	0
Písomná časť PhD.slov.	1	1		Ŭ
AEDA-Ved.pr.v dom.recen.ved.zbor.konf.	8	17	M-ERA	3
ADEA-Zahr.nekarent.čas.impaktované	2		COST	3
ADEB-Zahr.nekarent.čas.neimpaktované	5		Bilateral	1
ADFA-Dom.nekarent.čas.impaktované	1			
ADFB-Dom.nekarent.čas.neimpaktované	1		Total	17

... moderné materiály pre budúcnosť.

Technologies

• PVD coatings (DC/HiPIMS and HiTUS)

THESE

- Spark Plasma Sintering
- Nanofibers (electrospinning)
- Laser treatment
- Amorphous metals
- Microwave sintering

High resolution microscopy

W filament eSEM/EDS, WDS

FIB/SEM DualBeam FESEM

Meter AFM Dimension Icon

icon

Nanohardness testing

Nanohardness testers G200 (Agilent) NHT CSM Instruments

FEM of cracking during nanoindentation and scratch testing in the coated systems

František Lofaj, Dušan Németh*

Institute of Materials Research of the Slovak Academy of Sciences Košice, Slovakia * (currently at: Robert Bosch, Ltd., České Budějovice, Czech Republic)

Introduction

Tribological test vs. scratch testing (constant load/progressive load increase)

Kuiry, Bruker 2012

Differences: ball diameters, higher maximum loads – stronger deformation of the substrate..

Basic processes during scratch test

Effects of interface sliding and friction during scratch test

Through Thickness Cracking

- Brittle Tensile Cracking: Nested microcracks; open to the direction of scratch; straight and semi-circular; formed behind the stylus.
- Hertz Cracking: Series of nested microcracks within the scratch groove
- Conformal Cracking: micro-cracks form while coating try to conform to the groove; open away from the direction of scratch.

Adhesive cracks at the coating/substrate interface

Hertz

Cohesive cracks (in the coating) analogous to "frame" cracks formed due to local tensile stresses

Adhesive cracks in the coating

Chipping
Rounded regions of coating removal extending
laterally from the edges of the scratch groove

Spallation

- Buckling : coating buckles ahead of the stylus tip; irregularly wide arc-shaped patches missing; opening away from scratch direction.
- Wedging : Caused by a delaminated region wedging ahead to separate the coating; regularly spaced annular-circular that extends beyond the edge of the groove.
- *Recovery:* regions of detached coating along one or both sides of the grove; produced by elastic recovery behind the stylus and plastic deformation in the substrate.
- *Gross Spallation :* Large detached regions; common in coating with low adhesion strength.

Modelling of the scratch tests

Modelling ... in 2D; the first 3D models – in 2003 (Holmberg)

modelling of cohesive coatings - xFEM (+ FEM)

Nanoindentation = progressive load increase scratch test with zero velocity...

Objectives

Finite element modeling of the processes of:

- cohesive cracking in hard brittle W-C coating/steel substrate during nanoindentation and scratch testing
- attempt to get information about the strength and toughness of coatings.

Applicability: cracking in the transfer layer during tribological tests

Experimental procedure

Substrate: construction steel (12050) after hardening (860°C/30 min, quenching into oil, tempering 200°C/120 min); polished to $R_a \sim 10$ nm

Deposition procedure

HiPIMS, 3 inch WC target, working pressure 0,5 Pa, 500W, $\alpha = 3\%$ (200 Hz, 150 us), 2 vol.% of C₂H₂ in Ar atmosphere, 34 min W-C coating, t = 991 ± 35 nm.

Cryofox Discovery 500, Polyteknik, Danmark

amorphous structure....

Experimental techniques

Nanoindentation

G200, Agilent Technologies

Scratch tester

Model UMT 2, Bruker, USA

Berkovich indenter tip with R = 1.15 um CSM mode, f = 45 Hz, amplitude 2 nm constant depth of 1500 nm; constant strain rate 0.05 s^{-1} , 4 x 4 = 16 indents. indenter velocity 0.014 mm/s

Rockwell C diamond tip R = 200 um; cone angle 120° pre-load 2 N; linearly increased up to 100 N scratch length 7 mm

Multiple circular "frame" cracks in hard W-C coating/steel substrate during indentation

Cracking during indentation

Evolution of principal tensile stresses and plastic deformation during nanoindentation

Principal stress distribution in coating/substrate at 200 mN load

xFEM multiple crack evolution

infinite bonding between the coating and substrate

Fracture toughness of W-C coating on steel from XFEM

W-C coating fracture toughness

	σ _{max} [GPa]	G _c [Gpa.μm]	K _{IC} [MPa.m ^{1/2}]	L _{cz} [μm]
δ _{c1} = 0,001 μm	9,535	0,0047675	1,246	0,006828
δ _{c2} = 0,008 μm	9,535	0,03814	3,524	0,054623
δ _{c3} = 0,01 μm	9,535	0,047675	3,939	0,068279

Scratch testing

Cohesive cracking during scratch testing

 $L_{c1} = 4.64 \text{ N}$ $L_{c2} = 4.71 \text{ N}$

Scratch topography

Strong deformation zones along the scratch

Scratch test - Experiment vs. FEM

Vertical displacement along the scratch path

The distribution of principal stresses along the scratch path at L_{c1}

High compressive stresses ...spalling/buckling (CZM??)

Scratch test - Experiment vs. FEM

Scratch test - Experiment vs. XFEM

The difference between XFEM and experimentfriction omitted; coating strength variation.

XFEM development of Chevron cracks in W-C coating during scratch test

XFEM evolution of Chevron cracks in W-C coating into arc-tensile cracks during scratch test

Scratch test - Experiment vs. FEM*

Fracture toughness of the W-C coating

$$K_{IC} = \sqrt{\frac{G_c E}{1 - \vartheta^2}}$$

 G_c – fracture energy, strength and δ_c identical to those from nanoindentation

 $K_{1c} = 3.5 \text{ MPa.m}^{1/2}$

Conclusions

Current work on the W-C coating/steel system successfully modelled:

- Cohesive cracks originating from the top coating surface in the sink-in zone and coating/substrate interface, during nanoindentation.
- Chevron cracks evolved into arc-tensile cracks during scratch testing.
- The formation of these cracks is controlled by the plastic deformation of the substrate.

Nanoindentation and/or scratch testing in combination with XFEM can be used for the determination of the fracture toughness of the brittle hard coatings on softer substrates.

Early stages of wear in coated systems can be understand....

Extended FEM for adhesive cracks

6th International Indentation Workshop

Keynote Speakers

July 6 2018

• Prof. Munawar Chaudhri, University of Cambridge, UK

Sapporo, Japan

- · Prof. Karsten Durst, Technical University Darmstadt, Germany
- Prof. Frantisek Lofaj, Slovak Academy of Sciences, Slovakia
- · Prof. Andrew Minor, University of California, Berkeley, USA
- Dr. Warren Oliver, Nanomechanics, Inc., USA

Topics

July 1

2018

- · Analysis of deformation and fracture during indentation
- Modeling and simulation of mechanical behavior in small scale
- · Extracting mechanical properties and multi scale modeling
- Advanced nanomechanical characterization including in-situ probing
- New developments and improvements in mechanical testing
- Instrumented indentation under various environmental conditions
- Application to broad area in inorganic and organic materials

Important Date

Abstract submission due date: *Dec. 21. 2017*. Early registration due date: *Feb. 28. 2018*.

Registration page opened!!

by Feb.	. 28. 2018. a	fter Mar.1st. 2018
Regular	60,000-	70,000-
Student	40,000-	50,000-
Accompanying	30,000-	40,000-
(JPY : Lunch, Ex	cursion, Banqu	let all included)

poster award

We will have a *poster session* especially for young scientists and students *with poster award* for them!

Workshop Chair

Prof. Takahito Ohmura, National Institute for Material Science, Japan

Venue

Hokkaido University Conference Hall Kita-8 Nishi-5, Kita-ku-Kita, Sapporo, Hokkaido 060-0808 Japan

Sponsors needed!!

http://www.iiw6.jp/index.html Contact: IIW6_2018@nims.go.jp National Institute for Materials Science, Japan